Physicochemical characteristics of pristine and functionalized graphene
نویسندگان
چکیده
منابع مشابه
Wettability of pristine and alkyl-functionalized graphane.
Graphane is a hydrogenated form of graphene with high bandgap and planar structure insensitive to a broad range of chemical substitutions. We describe an atomistic simulation approach to predict wetting properties of this new material. We determine the contact angle to be 73°. The lower hydrophobicity compared to graphene is explained by the increased planar density of carbon atoms while we dem...
متن کاملLarge and pristine films of reduced graphene oxide
A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water mole...
متن کاملSpectroscopy of covalently functionalized graphene.
In order to engineer a band gap into graphene, covalent bond-forming reactions can be used to change the hybridization of the graphitic atoms from sp(2) to sp(3), thereby modifying the conjugation length of the delocalized carbon lattice; similar side-wall chemistry has been shown to introduce a band gap into metallic single-walled carbon nanotubes. Here we demonstrate that the application of s...
متن کاملSpontaneous Twist and Intrinsic Instabilities of Pristine Graphene Nanoribbons
In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent orbitals and tends to elongate the edge, with an effective force of f e ~ 2 eV/Å (larger for armchair edges than for zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the case of narrow ribbons, as it favors their spontaneous twisting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Toxicology
سال: 2017
ISSN: 0260-437X
DOI: 10.1002/jat.3493